Du G./Публикации

From Антэкология ⋮ Anthecology
Jump to: navigation, search
Автор
АВТОР ПУБЛИКАЦИЙ 3
Du G.
3
Автор антэкологических публикаций

, Qi W.
1
Автор антэкологических публикаций

Plant Ecology
4
Журнал с антэкологическими публикациями.
Springer Science+Business Media

. 2010. V. 209. No. 2. P. 321–333. Статья
Flowering timing is of fundamental biological importance for its tight association with pre-flower growth states and subsequent reproduction success. Here, we selected plant height and seed size to represent plant growth and reproduction states, respectively, and analyzed their associations with flowering time in 11 communities together representing a QingHai-Tibetan flora. Trait associations were examined using Pearson correlation analyses (TIPs) and phylogenetically independent contrasts (PICs
) within individual communities and meta-analyses across all communities. The results of TIPs-based and PICs-based analyses were generally congruent, although fewer contrasts were significant with PICs, probably because of low statistical power. Overall, flowering time was negatively correlated with seed size and plant height (i.e., plants with larger seeds and stature started flowering earlier) in various woody communities, but correlations were neutral or positive in herbaceous communities. The seed size–flowering time relationship was negative for woody and herbaceous perennials but not for annual herbs in most communities. The relationship between plant height and flowering time was negative for woody but positive for herbaceous plants. Moreover, the lack of difference in time–size relationships between anemophilous and entomophilous plants suggests that pollination type may only be a secondary force in controlling flowering phenology. Our studies demonstrate that environmental conditions, community structure, and plant life history strategies may affect community flowering time singly or in combination.
Guo H.
1
Автор антэкологических публикаций

, Mazer S.J.
4
Автор антэкологических публикаций

, Du G.
3
Автор антэкологических публикаций

American Journal of Botany
146
Журнал с антэкологическими публикациями.
Botanical Society of America · ajb@botany.org

. 2010. V. 97. No. 8. P. 1334–1341. Статья
Premise of the study: The study of geographic variation in ecologically important traits within and among taxa is a first step toward understanding the environmental factors that contribute to population differentiation and species divergence. This study examines variation in mean sex allocation per flower (androecium mass/gynoecium mass) among 49 wild populations representing 12 Pedicularis species across an elevation gradient on the eastern Tibetan Plateau. Methods: We used population means to
evaluate sources of variation in per-flower sex allocation within and across species. In particular, we evaluate the relative influence of intrinsic (i.e., plant size, estimated as aboveground stem biomass) vs. extrinsic factors affecting mean sex allocation among populations. Key results: Mean sex allocation per flower (the relative investment in male floral organs) is negatively correlated with mean plant size; populations of large plants produce relatively female-biased flowers. This relationship between mean plant size and mean sex allocation is not statistically significant, however, when the effect of elevation is controlled statistically. Among populations within and across species, mean sex allocation increases with elevation. This relationship persists even when the effect of mean plant size is controlled statistically. Factors associated with increasing elevation appear to favor genotypes and/or taxa with male-biased flowers. Conclusion: Extrinsic environmental conditions may be more important than intrinsic resource status in determining patterns of geographic variation in mean sex allocation among populations or species of Pedicularis. We cannot conclude whether the effect of elevation on mean sex allocation is the result of environmentally induced plasticity, genetically based adaptation, or species sorting, but it is only partly mediated by mean plant size.
Jia P.
Автор антэкологических публикаций

et al. (+3)
. 2011. V. 43. No. 4. P. 585–592. Статья
Flowering phenology is a key life history trait that strongly influences reproductive success. We investigated the relationship between flowering phenology and functional traits of 48 alpine herb species using the Leaf-Height-Seed (LHS) scheme developed by Westoby (1998) to quantify the ecological strategy of the plant species. Phenological data were obtained by weekly observation of fifty 0.5 3 0.5 m2 quadrates. Specific leaf area (SLA), height, and seed size of 48 alpine herbs were measured. C
omparative generalized estimating equations and generalized linear models suggested that flowering peak date was positively correlated with size of maternal plant (biomass and height) and negatively correlated with seed size. Species with a longer flowering period were smaller and produced bigger seeds than those with a short flowering season. Flowering peak date and duration were negatively correlated, although this correlation was mainly present in annuals, which are relatively rare in the alpine meadow. Relationships between flowering phenology and specific leaf area (SLA) were weak. There were only weak effects of phylogeny on the relationships between flowering phenology and functional traits. Wind-pollinated species flowered earlier than insect-pollinated species. Annuals flowered longer than perennials. Relationships between flowering phenology and functional traits indicate that there is a tradeoff between maternal and reproductive growth, and flowering time may underlie the correlation between plant height and seed size.